PAPER ID-13640

B.Sc. EXAMINATION, 2023

(First Semester)

ELECTRICITY AND MAGNETISM

Code: PHY-102

Time: 3 Hours

Maximum Marks: 45

Before answering the puestion-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

- (a) State and prove Stoke's Theorem. 6
- (b) If $A = zx^3i 2x^2yzj + 2yz^4k$, find curl A at point (1, 1, 1).

\$20 T-13640

P.T.O.

- (a) Using Gauss's law, find the electricity intensity at a point (i) outside (ii) on the surface and (iii) inside a uniformly charged spherical shell.

 6
- (b) Using differential form of Gauss's law derive Poission's and Laplace's equation.

3

- (a) Deduce an expression for force per unit
 area acting normally outwards on the
 surface of a charged conductor. Hence
 calculate the energy per unit volume of
 electrostatic field.
 - (b) If $\phi = x^2 + y^2 + 2z$, find div grad ϕ . 2

Unit II

4. Give the electronic theory of paramagnetism.

9

T-13640

2

- Show that the area of BH loop represents the energy loss per unit volume per cycle 5 of magnetism.
 - A magnetic field of 1600 A/m produces a magnetic flux of 2×10^{-5} Wb in a bar of iron of cross-section 0.2×10^{-4} m². Calculate relative permeability and susceptibility of the bar. 4
- Define the following: 6
 - Magnetic Susceptibility
 - (ii) Intensity of magnetization

3

- Magnetic Induction
- (iv) Hysteresis
- Retentivity
- (vi) Coercivity.
- Prove Div B = 0.

13640

(D23-3-05/27) T-13640

- Derive Poynting's theorem for conservation of energy in an electromagnetic field and discuss physical meaning of each term lying in it. 9
- Derive differential form of Faraday's Law.
 - Derive Curl B= $\mu_0(J + \partial D/\partial t)$. 5

P.T.O.